Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 248
Filter
1.
Front Toxicol ; 6: 1357857, 2024.
Article in English | MEDLINE | ID: mdl-38511146

ABSTRACT

Background: The interstitial testicular Leydig cells are responsible for the production of testosterone, which functionally deteriorate with normal aging. Decreased expression of mitochondrial steroidogenic interactome proteins and diminished mitochondrial function in aging Leydig cells suggest that mitochondrial dynamics play a role in maintaining adequate levels of testosterone. Optic atrophy 1 (OPA1) protein regulates mitochondrial dynamics and cristae formation in many cell types. Previous studies showed that increasing OPA1 expression in dysfunctional Leydig cells restored mitochondrial function and recovered androgen production to levels found in healthy Leydig cells. These findings suggested that mitochondrial dynamics may be a promising target to ameliorate diminished testosterone levels in aging males. Methods: We used twelve-month-old rats to explore the relationship between mitochondrial dynamics and Leydig cell function. Isolated Leydig cells from aged rats were treated ex vivo with the cell-permeable mitochondrial fusion promoter 4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl)hydrazono)ethyl) phenol (mitochondrial fusion promoter M1), which enhances mitochondrial tubular network formation. In parallel, rats were treated with 2 mg/kg/day M1 for 6 weeks before Leydig cells were isolated. Results: Ex vivo M1-treated cells showed enhanced mitochondrial tubular network formation by transmission electron microscopy, enhanced Leydig cell mitochondrial integrity, improved mitochondrial function, and higher testosterone biosynthesis compared to controls. However, in vivo treatment of aged rats with M1 not only failed to re-establish testosterone levels to that of young rats, it also led to further reduction of testosterone levels and increased apoptosis, suggesting M1 toxicity in the testis. The in vivo M1 toxicity seemed to be tissue-specific, however. Conclusion: Promoting mitochondrial fusion may be one approach to enhancing cell health and wellbeing with aging, but more investigations are warranted. Our findings suggest that fusion promoters could potentially enhance the productivity of aged Leydig cells when carefully regulated.

2.
Biochimie ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38065288

ABSTRACT

Translocator protein (TSPO, 18 kDa), previously known as peripheral-type benzodiazepine receptor, is an evolutionarily conserved and tryptophan-rich 169-amino-acid protein located on the outer mitochondrial membrane. TSPO plays a crucial role in various fundamental physiological functions and cellular processes. Its expression is altered in pathological conditions, thus rendering TSPO a potential tool for diagnostic imaging and an appealing therapeutic target. The investigation of synthetic TSPO ligands as both agonists and antagonists has provided valuable insights into the regulatory mechanisms and functional properties of TSPO. Recently, accumulating evidence has highlighted the significance of TSPO in liver diseases. However, a comprehensive summary of TSPO function in the normal liver and diverse liver diseases is lacking. This review aims to provide an overview of recent advances in understanding TSPO function in both normal liver cells and various liver diseases, with a particular emphasis on its involvement in liver fibrosis and inflammation and addresses the existing knowledge gaps in the field that require further investigation.

3.
Int J Mol Sci ; 24(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37569886

ABSTRACT

Mitochondrial membrane protein ATAD3A is a member of the AAA-domain-containing ATPases superfamily. It is important for the maintenance of mitochondrial DNA, structure, and function. In recent years, an increasing number of ATAD3A mutations have been identified in patients with neurological symptoms. Many of these mutations disrupt mitochondrial structure, function, and dynamics and are lethal to patients at a young age. Here, we summarize the current understanding of the relationship between ATAD3A and mitochondria, including the interaction of ATAD3A with mitochondrial DNA and mitochondrial/ER proteins, the regulation of ATAD3A in cholesterol mitochondrial trafficking, and the effect of known ATAD3A mutations on mitochondrial function. In the current review, we revealed that the oligomerization and interaction of ATAD3A with other mitochondrial/ER proteins are vital for its various functions. Despite affecting different domains of the protein, nearly all documented mutations observed in ATAD3A exhibit either loss-of-function or dominant-negative effects, potentially leading to disruption in the dimerization of ATAD3A; autophagy; mitophagy; alteration in mitochondrial number, size, and cristae morphology; and diminished activity of mitochondrial respiratory chain complexes I, IV, and V. These findings imply that ATAD3A plays a critical role in mitochondrial dynamics, which can be readily perturbed by ATAD3A mutation variants.

4.
J Biol Chem ; 299(8): 105035, 2023 08.
Article in English | MEDLINE | ID: mdl-37442234

ABSTRACT

Neurosteroids, which are steroids synthesized by the nervous system, can exert neuromodulatory and neuroprotective effects via genomic and nongenomic pathways. The neurosteroid and major steroid precursor pregnenolone has therapeutical potential in various diseases, such as psychiatric and pain disorders, and may play important roles in myelination, neuroinflammation, neurotransmission, and neuroplasticity. Although pregnenolone is synthesized by CYP11A1 in peripheral steroidogenic organs, our recent study showed that pregnenolone must be synthesized by another mitochondrial cytochrome P450 (CYP450) enzyme other than CYP11A1 in human glial cells. Therefore, we sought to identify the CYP450 responsible for pregnenolone production in the human brain. Upon screening for CYP450s expressed in the human brain that have mitochondrial localization, we identified three enzyme candidates: CYP27A1, CYP1A1, and CYP1B1. We found that inhibition of CYP27A1 through inhibitors and siRNA knockdown did not negatively affect pregnenolone synthesis in human glial cells. Meanwhile, treatment of human glial cells with CYP1A1/CYP1B1 inhibitors significantly reduced pregnenolone production in the presence of 22(R)-hydroxycholesterol. We performed siRNA knockdown of CYP1A1 or CYP1B1 in human glial cells and found that only CYP1B1 knockdown significantly decreased pregnenolone production. Furthermore, overexpression of mitochondria-targeted CYP1B1 significantly increased pregnenolone production under basal conditions and in the presence of hydroxycholesterols and low-density lipoprotein. Inhibition of CYP1A1 and/or CYP1B1 via inhibitors or siRNA knockdown did not significantly reduce pregnenolone synthesis in human adrenal cortical cells, implying that CYP1B1 is not a major pregnenolone-producing enzyme in the periphery. These data suggest that mitochondrial CYP1B1 is involved in pregnenolone synthesis in human glial cells.


Subject(s)
Cholesterol Side-Chain Cleavage Enzyme , Cytochrome P-450 CYP1B1 , Pregnenolone , Humans , Brain/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1B1/metabolism , Hydroxycholesterols/metabolism , Mitochondria/metabolism , Neuroglia/metabolism , Pregnenolone/biosynthesis , RNA, Small Interfering/metabolism , Steroids/metabolism
5.
Front Cell Neurosci ; 17: 1210205, 2023.
Article in English | MEDLINE | ID: mdl-37416505

ABSTRACT

Translocator protein (TSPO), a 18 kDa protein found in the outer mitochondrial membrane, has historically been associated with the transport of cholesterol in highly steroidogenic tissues though it is found in all cells throughout the mammalian body. TSPO has also been associated with molecular transport, oxidative stress, apoptosis, and energy metabolism. TSPO levels are typically low in the central nervous system (CNS), but a significant upregulation is observed in activated microglia during neuroinflammation. However, there are also a few specific regions that have been reported to have higher TSPO levels than the rest of the brain under normal conditions. These include the dentate gyrus of the hippocampus, the olfactory bulb, the subventricular zone, the choroid plexus, and the cerebellum. These areas are also all associated with adult neurogenesis, yet there is no explanation of TSPO's function in these cells. Current studies have investigated the role of TSPO in microglia during neuron degeneration, but TSPO's role in the rest of the neuron lifecycle remains to be elucidated. This review aims to discuss the known functions of TSPO and its potential role in the lifecycle of neurons within the CNS.

7.
Cells ; 12(8)2023 04 20.
Article in English | MEDLINE | ID: mdl-37190107

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a SARS-like coronavirus, continues to produce mounting infections and fatalities all over the world. Recent data point to SARS-CoV-2 viral infections in the human testis. As low testosterone levels are associated with SARS-CoV-2 viral infections in males and human Leydig cells are the main source of testosterone, we hypothesized that SARS-CoV-2 could infect human Leydig cells and impair their function. We successfully detected SARS-CoV-2 nucleocapsid in testicular Leydig cells of SARS-CoV-2-infected hamsters, providing evidence that Leydig cells can be infected with SARS-CoV-2. We then employed human Leydig-like cells (hLLCs) to show that the SARS-CoV-2 receptor angiotensin-converting enzyme 2 is highly expressed in hLLCs. Using a cell binding assay and a SARS-CoV-2 spike-pseudotyped viral vector (SARS-CoV-2 spike pseudovector), we showed that SARS-CoV-2 could enter hLLCs and increase testosterone production by hLLCs. We further combined the SARS-CoV-2 spike pseudovector system with pseudovector-based inhibition assays to show that SARS-CoV-2 enters hLLCs through pathways distinct from those of monkey kidney Vero E6 cells, a typical model used to study SARS-CoV-2 entry mechanisms. We finally revealed that neuropilin-1 and cathepsin B/L are expressed in hLLCs and human testes, raising the possibility that SARS-CoV-2 may enter hLLCs through these receptors or proteases. In conclusion, our study shows that SARS-CoV-2 can enter hLLCs through a distinct pathway and alter testosterone production.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Male , SARS-CoV-2/metabolism , COVID-19/metabolism , Testosterone/metabolism , Leydig Cells/metabolism , Testis/metabolism , Peptidyl-Dipeptidase A/metabolism
8.
Biochimie ; 205: 73-85, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36029902

ABSTRACT

In the last decades, ligand binding to human TSPO has been largely used in clinical neuroimaging, but little is known about the interaction mechanism. Protein conformational mobility plays a key role in the ligand recognition and both, ligand-free and ligand-bound structures, are mandatory for characterizing the molecular binding mechanism. In the absence of crystals for mammalian TSPO, we have exploited solid-state nuclear magnetic resonance (ssNMR) spectroscopy under magic-angle spinning (MAS) to study the apo form of recombinant mouse TSPO (mTSPO) reconstituted in lipids. This environment has been previously described to permit binding of its high-affinity drug ligand PK11195 and appears therefore favourable for the study of molecular dynamics. We have optimized the physical conditions to get the best resolution for MAS ssNMR spectra of the ligand-free mTSPO. We have compared and combined various ssNMR spectra to get dynamical information either for the lipids or for the mTSPO. Partial assignment of residue types suggests few agreements with the published solution NMR assignment of the PK11195-bound mTSPO in DPC detergent. Moreover, we were able to observe some lateral chains of aromatic residues that were not assigned in solution. 13C double-quantum NMR spectroscopy shows remarkable dynamics for ligand-free mTSPO in lipids which may have significant implications on the recognition of the ligand and/or other protein partners.


Subject(s)
Liposomes , Proteins , Animals , Mice , Humans , Magnetic Resonance Spectroscopy , Protein Conformation , Mammals/metabolism , Lipids , Nuclear Magnetic Resonance, Biomolecular/methods , Receptors, GABA/chemistry , Receptors, GABA/metabolism
9.
Andrology ; 11(5): 816-825, 2023 07.
Article in English | MEDLINE | ID: mdl-36164998

ABSTRACT

Reduced serum testosterone affects millions of men across the world and has been linked to several comorbidities, metabolic dysfunctions, and quality of life changes. The standard treatment for testosterone deficiency remains testosterone replacement therapy. However, limitations on its use and the risk of significant adverse effects make alternative therapeutics desirable. Studies on the mechanisms regulating and synthesizing testosterone formation in testicular Leydig cells demonstrate numerous endogenous targets that could increase testosterone biosynthesis, which could alleviate reduced testosterone effects. Testosterone biosynthesis is facilitated by a conglomerate of cytosolic and mitochondrial proteins that facilitate cholesterol translocation into the mitochondria, the rate-limiting step in steroidogenesis. An effective therapeutic approach would be required to increase endogenous testosterone formation by enhancing steroidogenesis in Leydig cells. Numerous ligands for steroidogenic proteins have been developed, which increase steroid hormone formation. However, off-target effects on neurosteroid and adrenal steroid formation may limit their clinical use. First-in-class biologics, such as voltage-dependent anion channel peptides and transplantation of induced human Leydig-like cells offer advances in the development of specific strategies that could be used to enhance endogenous steroid formation in hormone deficient patients.


Subject(s)
Leydig Cells , Testosterone , Male , Humans , Leydig Cells/metabolism , Quality of Life , Testis/metabolism , Cholesterol/metabolism
10.
Children (Basel) ; 9(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36553323

ABSTRACT

BACKGROUND: MCPH1 is known as the microcephalin gene (OMIM: *607117), of which the encoding protein is a basic regulator of chromosome condensation (BCRT-BRCA1 C-terminus). The microcephalin protein is made up of three BCRT domains and conserved tandem repeats of interacting phospho-peptides. There is a strong connection between mutations of the MCPH1 gene and reduced brain growth. Specifically, individuals with such mutations have underdeveloped brains, varying levels of mental retardation, delayed speech and poor language skills. METHODS: In this article, a family with two affected fetuses presenting a mutation of the MCPH1 gene is reported. During the first trimester ultrasound of the second pregnancy, the measure of nuchal translucency was increased (NT = 3.1 mm) and, therefore, the risk for chromosomal abnormalities was high. Chorionic villi sampling (CVS) was then performed. Afterwards, fetal karyotyping and Next Generation Sequencing were carried out. Afterwards, NGS was also performed in a preserved sample of the first fetus which was terminated due to microcephaly. RESULTS: In this case, the fetuses had a novel homozygous mutation of the MCPH1 gene (c.348del). Their parents were heterozygous for the mutation. The fetuses showed severe microcephaly. Because of the splice sites in introns, this mutation causes the forming of dysfunctional proteins which lack crucial domains of the C-terminus. CONCLUSION: Our findings portray an association between the new MCPH1 mutation (c.348del) and the clinical features of autosomal recessive primary microcephaly (MCPH), contributing to a broader spectrum related to these pathologies. To our knowledge, this is the first prenatal diagnosis of MCPH due to a novel MCPH1 mutation.

11.
FASEB J ; 36(12): e22637, 2022 12.
Article in English | MEDLINE | ID: mdl-36349989

ABSTRACT

The mitochondrial translocator protein (18 kDa; TSPO) is a high-affinity cholesterol-binding protein that is an integral component of the cholesterol trafficking scaffold responsible for determining the rate of cholesterol import into the mitochondria for steroid biosynthesis. Previous studies have shown that TSPO declines in aging Leydig cells (LCs) and that its decline is associated with depressed circulating testosterone levels in aging rats. However, TSPO's role in the mechanistic decline in LC function is not fully understood. To address the role of TSPO depletion in LC function, we first examined mitochondrial quality in Tspo knockout mouse tumor MA-10 nG1 LCs compared to wild-type MA-10 cells. Tspo deletion caused a disruption in mitochondrial function and membrane dynamics. Increasing mitochondrial fusion via treatment with the mitochondrial fusion promoter M1 or by optic atrophy 1 (OPA1) overexpression resulted in the restoration of mitochondrial function and mitochondrial morphology as well as in steroid formation in TSPO-depleted nG1 LCs. LCs isolated from aged rats form less testosterone than LCs isolated from young rats. Treatment of aging LCs with M1 improved mitochondrial function and increased androgen formation, suggesting that aging LC dysfunction may stem from compromised mitochondrial dynamics caused by the age-dependent LC TSPO decline. These results, taken together, suggest that maintaining or enhancing mitochondrial fusion may provide therapeutic strategies to maintain or restore testosterone levels with aging.


Subject(s)
Leydig Cells , Mitochondrial Dynamics , Mice , Male , Rats , Animals , Leydig Cells/metabolism , Receptors, GABA/genetics , Receptors, GABA/metabolism , Mitochondrial Proteins/metabolism , Cholesterol/metabolism , Testosterone/metabolism
12.
Int J Mol Sci ; 23(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36292972

ABSTRACT

Cholesterol is a lipid molecule essential for several key cellular processes including steroidogenesis. As such, the trafficking and distribution of cholesterol is tightly regulated by various pathways that include vesicular and non-vesicular mechanisms. One non-vesicular mechanism is the binding of cholesterol to cholesterol transport proteins, which facilitate the movement of cholesterol between cellular membranes. Classic examples of cholesterol transport proteins are the steroidogenic acute regulatory protein (STAR; STARD1), which facilitates cholesterol transport for acute steroidogenesis in mitochondria, and sterol carrier protein 2/sterol carrier protein-x (SCP2/SCPx), which are non-specific lipid transfer proteins involved in the transport and metabolism of many lipids including cholesterol between several cellular compartments. This review discusses the roles of STAR and SCP2/SCPx in cholesterol transport as model cholesterol transport proteins, as well as more recent findings that support the role of these proteins in the transport and/or metabolism of other lipids.


Subject(s)
Carrier Proteins , Cholesterol , Carrier Proteins/metabolism , Cholesterol/metabolism , Biological Transport , Mitochondria/metabolism
14.
Hum Genomics ; 16(1): 32, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35996156

ABSTRACT

BACKGROUND: The detoxification of very long-chain and branched-chain fatty acids and the metabolism of cholesterol to form bile acids occur largely through a process called peroxisomal ß-oxidation. Mutations in several peroxisomal proteins involved in ß-oxidation have been reported, resulting in diseases characterized by neurological defects. The final step of the peroxisomal ß-oxidation pathway is catalyzed by sterol carrier protein-x (SCPx), which is encoded by the SCP2 gene. Previously, there have been two reports of SCPx deficiency, which resulted from a homozygous or compound heterozygous SCP2 mutation. We report herein the first patient with a heterozygous SCP2 mutation leading to SCPx deficiency. RESULTS: Clinical presentations of the patient included progressive brainstem neurodegeneration, cardiac dysrhythmia, muscle wasting, and azoospermia. Plasma fatty acid analysis revealed abnormal values of medium-, long-, and very long-chain fatty acids. Protein expression of SCPx and other enzymes involved in ß-oxidation were altered between patient and normal fibroblasts. RNA sequencing and lipidomic analyses identified metabolic pathways that were altered between patient and normal fibroblasts including PPAR signaling, serotonergic signaling, steroid biosynthesis, and fatty acid degradation. Treatment with fenofibrate or 4-hydroxytamoxifen increased SCPx levels, and certain fatty acid levels in patient fibroblasts. CONCLUSIONS: These findings suggest that the patient's SCP2 mutation resulted in decreased protein levels of SCPx, which may be associated with many metabolic pathways. Increasing SCPx levels through pharmacological interventions may reverse some effects of SCPx deficiency. Collectively, this work provides insight into many of the clinical consequences of SCPx deficiency and provides evidence for potential treatment strategies.


Subject(s)
Cholesterol , Lipid Metabolism , Base Sequence , Brain Stem/metabolism , Fatty Acids/metabolism , Humans , Lipid Metabolism/genetics
15.
Endocrinology ; 163(8)2022 08 01.
Article in English | MEDLINE | ID: mdl-35704520

ABSTRACT

The steroidogenic acute regulatory protein (STAR; STARD1) is critical for the transport of cholesterol into the mitochondria for hormone-induced steroidogenesis. Steroidogenic cells express STAR under control conditions (constitutive STAR). On hormonal stimulation, STAR localizes to the outer mitochondrial membrane (OMM) where it facilitates cholesterol transport and where it is processed to its mature form. Here, we show that knockout of Star in MA-10 mouse tumor Leydig cells (STARKO1) causes defects in mitochondrial structure and function under basal conditions. We also show that overexpression of Star in STARKO1 cells exacerbates, rather than recovers, mitochondrial structure and function, which further disrupts the processing of STAR at the OMM. Our findings suggest that constitutive STAR is necessary for proper mitochondrial structure and function and that mitochondrial dysfunction leads to defective STAR processing at the OMM.


Subject(s)
Leydig Cells , Mitochondria , Phosphoproteins , Animals , Biological Transport , Cholesterol/metabolism , Leydig Cells/metabolism , Male , Mice , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Phosphoproteins/metabolism
16.
J Biol Chem ; 298(7): 102110, 2022 07.
Article in English | MEDLINE | ID: mdl-35688208

ABSTRACT

Neurosteroids, modulators of neuronal and glial cell functions, are synthesized in the nervous system from cholesterol. In peripheral steroidogenic tissues, cholesterol is converted to the major steroid precursor pregnenolone by the CYP11A1 enzyme. Although pregnenolone is one of the most abundant neurosteroids in the brain, expression of CYP11A1 is difficult to detect. We found that human glial cells produced pregnenolone, detectable by mass spectrometry and ELISA, despite the absence of observable immunoreactive CYP11A1 protein. Unlike testicular and adrenal cortical cells, pregnenolone production in glial cells was not inhibited by CYP11A1 inhibitors DL-aminoglutethimide and ketoconazole. Furthermore, addition of hydroxycholesterols increased pregnenolone synthesis, suggesting desmolase activity that was not blocked by DL-aminoglutethimide or ketoconazole. We explored three different possibilities for an alternative pathway for glial cell pregnenolone synthesis: (1) regulation by reactive oxygen species, (2) metabolism via a different CYP11A1 isoform, and (3) metabolism via another CYP450 enzyme. First, we found oxidants and antioxidants had no significant effects on pregnenolone synthesis, suggesting it is not regulated by reactive oxygen species. Second, overexpression of CYP11A1 isoform b did not alter synthesis, indicating use of another CYP11A1 isoform is unlikely. Finally, we show nitric oxide and iron chelators deferoxamine and deferiprone significantly inhibited pregnenolone production, indicating involvement of another CYP450 enzyme. Ultimately, knockdown of endoplasmic reticulum cofactor NADPH-cytochrome P450 reductase had no effect, while knockdown of mitochondrial CYP450 cofactor ferredoxin reductase inhibited pregnenolone production. These data suggest that pregnenolone is synthesized by a mitochondrial cytochrome P450 enzyme other than CYP11A1 in human glial cells.


Subject(s)
Neuroglia/metabolism , Neurosteroids , Pregnenolone/metabolism , Aminoglutethimide , Cholesterol/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Humans , Ketoconazole/pharmacology , Pregnenolone/biosynthesis , Reactive Oxygen Species
17.
J Biol Chem ; 298(6): 102008, 2022 06.
Article in English | MEDLINE | ID: mdl-35513069

ABSTRACT

Mitochondrial ATPase ATAD3A is essential for cholesterol transport, mitochondrial structure, and cell survival. However, the relationship between ATAD3A and nonalcoholic fatty liver disease (NAFLD) is largely unknown. In this study, we found that ATAD3A was upregulated in the progression of NAFLD in livers from rats with diet-induced nonalcoholic steatohepatitis and in human livers from patients diagnosed with NAFLD. We used CRISPR-Cas9 to delete ATAD3A in Huh7 human hepatocellular carcinoma cells and used RNAi to silence ATAD3A expression in human hepatocytes isolated from humanized liver-chimeric mice to assess the influence of ATAD3A deletion on liver cells with free cholesterol (FC) overload induced by treatment with cholesterol plus 58035, an inhibitor of acetyl-CoA acetyltransferase. Our results showed that ATAD3A KO exacerbated FC accumulation under FC overload in Huh7 cells and also that triglyceride levels were significantly increased in ATAD3A KO Huh7 cells following inhibition of lipolysis mediated by upregulation of lipid droplet-binding protein perilipin-2. Moreover, loss of ATAD3A upregulated autophagosome-associated light chain 3-II protein and p62 in Huh7 cells and fresh human hepatocytes through blockage of autophagosome degradation. Finally, we show the mitophagy mediator, PTEN-induced kinase 1, was downregulated in ATAD3A KO Huh7 cells, suggesting that ATAD3A KO inhibits mitophagy. These results also showed that loss of ATAD3A impaired mitochondrial basal respiration and ATP production in Huh7 cells under FC overload, accompanied by downregulation of mitochondrial ATP synthase. Taken together, we conclude that loss of ATAD3A promotes the progression of NAFLD through the accumulation of FC, triglyceride, and damaged mitochondria in hepatocytes.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Non-alcoholic Fatty Liver Disease , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Adenosine Triphosphatases/metabolism , Animals , Cell Line , Hepatocytes/enzymology , Humans , Liver/enzymology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mitochondria, Liver/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Non-alcoholic Fatty Liver Disease/enzymology , Rats , Triglycerides/metabolism
18.
Pharmacol Ther ; 233: 108028, 2022 05.
Article in English | MEDLINE | ID: mdl-34755606

ABSTRACT

Caveolin-1 (CAV1) is expressed in several solid tumors both in cancerous cells as well as in tumor stroma and is reported to be related to cancer progression, metastasis, therapy resistance and clinical outcomes. Many studies report contrasting functions of this protein depending on the tumor cell model, the tumor type, or the stage of cancer studied. This protein is reported to function both as tumor suppressor and as tumor promoter. In this review, we aim to summarize translational and clinical studies that provide evidence of the role of CAV1 in tumor progression and survival outcome focusing on tumors of the gastrointestinal (GI) tract. Towards this aim, a detailed search has been performed for studies on the expression and the role of CAV1 in oesophageal, gastric, colorectal, pancreatic cancer and cholangiocarcinoma prognosis. We also review and discuss the implication of CAV1 in the outcome of pharmacological interventions. We conclude that CAV1 has the potential to become an important prognostic, and possibly predictive, biomarker in GI malignancies. It may also become a novel target towards the development of improved cancer therapies. However, it is obvious that there remains a lack of consensus on important issues such as the methodologies and cut-off levels in caveolin assessment. This ultimately result in many studies being contradictory not only in terms of the role of CAV1 as a tumor-promoting or suppressing gene but also in terms of the tumor compartment in which the levels of this protein may be of clinical significance. Addressing these important technical issues, in conjunction with a further elucidation of the role of CAV1 in tumor formation and progression, will delineate the importance of CAV1 in prognostic and therapeutic perspectives.


Subject(s)
Caveolin 1 , Gastrointestinal Neoplasms , Caveolin 1/genetics , Caveolin 1/metabolism , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics , Humans , Prognosis
19.
Front Endocrinol (Lausanne) ; 13: 1003017, 2022.
Article in English | MEDLINE | ID: mdl-36686419

ABSTRACT

Cholesterol is the precursor of all steroid hormones, and the entry of cholesterol into the mitochondria is the rate-limiting step of steroidogenesis. Voltage-dependent anion channel (VDAC1) is an outer mitochondrial protein part of a multiprotein complex that imports cholesterol. We previously reported that intratesticular administration of a 25 amino acid peptide blocking the interaction between 14-3-3ϵ with VDAC1 increased circulating levels of testosterone. This fusion peptide was composed of a HIV-1 transactivator of transcription (TAT) protein transduction domain cell-penetrating peptide, a glycine linker, and amino acids 159-172 of VDAC1 (TV159-172). Here, we describe the development of a family of small molecules that increase circulating testosterone levels after an oral administration. We first characterized an animal model where TV159-172 was delivered subcutaneously. This subcutaneous model allowed us to study the interactions between TV159-172 and the hypothalamus-pituitary-gonadal axis (HPG) and identify the biologically active core of TV159-172. The core consisted of the tetrapeptide RVTQ, which we used as a platform to design synthetic peptide derivatives that can be administered orally. We developed a second animal model to test various derivatives of RVTQ and found 11 active compounds. Dose-response experiments identified 4 synthetic peptides that robustly increased androgen levels in a specific manner. We selected RdVTQ as the leading VDAC1-core derivative and profiled the response across the lifespan of Brown-Norway rats. In summary, we present the development of a new class of therapeutics that act within the HPG axis to increase testosterone levels specifically. This new class of small molecules self-regulates, preventing abuse.


Subject(s)
Apoptosis , Voltage-Dependent Anion Channel 1 , Rats , Male , Animals , Voltage-Dependent Anion Channel 1/chemistry , Voltage-Dependent Anion Channel 1/metabolism , Peptides/metabolism , Voltage-Dependent Anion Channels , Testosterone , Administration, Oral
20.
Toxicology ; 463: 152985, 2021 11.
Article in English | MEDLINE | ID: mdl-34627990

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is widely used in manufacturing. Previous studies have shown that mono-(2-ethylhexyl) phthalate (MEHP), the active metabolite of DEHP, has inhibitory effects on luteinizing hormone (LH)-stimulated steroid biosynthesis by Leydig cells. The molecular mechanisms underlying its effects, however, remain unclear. In the present study, we examined the effects of MEHP on changes in mitochondrial function in relationship to reduced progesterone formation by MA-10 mouse tumor Leydig cells. Treatment of MA-10 cells with MEHP (0-300 µM for 24 h) resulted in dose-dependent inhibition of LH-stimulated progesterone biosynthesis. Biochemical analysis data revealed that the levels of the mature steroidogenic acute regulatory protein (STAR), a protein that works at the outer mitochondrial membrane to facilitate the translocation of cholesterol for steroid formation, was significantly reduced in response to MEHP exposures. MEHP also caused reductions in MA-10 cell mitochondrial membrane potential (ΔΨm) and mitochondrial respiration as evidenced by decreases in the ability of the mitochondria to consume molecular oxygen. Additionally, significant increases in the generation of mitochondrial superoxide were observed. Taken together, these results indicate that MEHP inhibits steroid formation in MA-10 cells at least in part by its effects on mitochondrial function.


Subject(s)
Diethylhexyl Phthalate/analogs & derivatives , Leydig Cells/chemistry , Mitochondria/drug effects , Plasticizers/toxicity , Animals , Cell Line, Tumor , Cholesterol/metabolism , Diethylhexyl Phthalate/administration & dosage , Diethylhexyl Phthalate/toxicity , Dose-Response Relationship, Drug , Leydig Cells/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/physiology , Oxygen/metabolism , Plasticizers/administration & dosage , Steroids/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...